32. Token Economics for Builders

Overview and links for this section of the guide.

The Cost Reality

LLM costs sneak up on you. What feels cheap in development becomes expensive at scale:

Development:  100 requests/day × $0.01 = $1/day    ✓ Fine
Production:   100,000 requests/day × $0.01 = $1,000/day  😱

Understanding token economics is essential for building sustainable AI products.

The Cost Equation

┌─────────────────────────────────────────────────────────────────┐
│                    COST = TOKENS × PRICE                         │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  TOKENS                                                          │
│  ├─ Input tokens (your prompt + context)                        │
│  └─ Output tokens (model's response)                            │
│                                                                  │
│  PRICE (varies by model)                                         │
│  ├─ Flash: $0.075 / 1M input, $0.30 / 1M output                │
│  ├─ Pro: $1.25 / 1M input, $5.00 / 1M output                   │
│  └─ Output tokens cost MORE than input tokens                   │
│                                                                  │
│  OPTIMIZATION LEVERS                                             │
│  ├─ Reduce input tokens (smaller context)                       │
│  ├─ Reduce output tokens (concise responses)                    │
│  ├─ Use cheaper models (Flash vs Pro)                           │
│  └─ Cache and batch (fewer API calls)                           │
│                                                                  │
└─────────────────────────────────────────────────────────────────┘

Cost Levers

Lever Effort Impact
Use Flash instead of Pro Low ~10x cheaper
Compress context Medium 2-5x cheaper
Cache responses Medium 10-100x cheaper
Batch requests Low 2-5x cheaper
Limit output tokens Low 1.5-3x cheaper

Where to go next